ITASCA 3DEC 7

Description

ITASCA 3DEC 7

3DEC is ideally suited to analyze potential modes of failure directly related to the presence of discontinuous features. Work with either discrete blocks, zoned continuum, or both.

3DEC provides 12 built-in zone material models, three built-in joint models, groundwater flow (solid matrix and joints), coupled mechanical-flow calculation, ground support structural elements, and a built-in scripting language (FISH) that can customize or automate virtually all aspects of program operation, including user-defined properties and other variables.

The software can be extended with four options (dynamic, thermal, Finite Element (FE) liners and blocks, and C++ User-Defined Constitutive Models) that are offered separately from the base program (see Options for more information).

3DEC offers a fully integrated development environment that includes: project management facilities, built-in text editor, automatic movie-frame generation, extensive plotting capabilities, and results monitoring.

General

  • Analysis of jointed rock and blocky structures based on the Distinct Element Method (DEM)
  • Built-in project management tools, text editor, automatic movie-frame generation, and extensive plotting capabilities,
  • Ideal for modeling large movements and deformations
  • Accurate simulation of fast rotating rigid blocks
  • Blocks may be rigid or automatically zoned (tetrahedral and/or hexahedral) to make deformable blocks
  • Optimized to solve problems requiring non-linear multi-physics
  • 64-bit, double-precision calculations
  • Multi-threaded algorithms with no CPU locks or additional CPU fees
  • Includes groundwater joint fluid-flow
  • Includes groundwater matrix (i.e., permeable solids) fluid-flow between fractures
  • Fluid flow may be either uncoupled or fully coupled hydromechanical
  • Proppant simulation in fluid-filled joints
  • Built-in scripting languages, FISH and Python, provides powerful user-control to parameterize, analyze, review, and modify nearly every aspect of the simulation, even during cycling
  • Track histories of model properties and results throughout the model to allow for comparison to actual monitoring and instrumentation data
  • Updated commands that are intuitive, easy to learn, and easy to apply NEW
  • Automatic conversion tool to translate 3DEC 5.2 data files to the updated 3DEC 7.0 syntax NEW

Materials and Constitutive Models

  • Includes 12 built-in constitutive material models:
    • Elastic, isotropic
    • Elastic, transversely isotropic
    • Elastic, orthotropic
    • Drucker-Prager
    • Mohr-Coulomb
    • Ubiquitous-joint (UBJ)
    • Strain hardening/softening
    • Bilinear strain hardening/softening UBJ
    • Double yield
    • Modified Cam-clay
    • Hoek-Brown UPDATED
    • Hoek-Brown-PAC UPDATED
  • Includes 8 built-in creep material models:
    • Classical (viscoelastic)
    • Burgers substance (viscoelastic)
    • Two-component power law
    • Reference creep formulation (WIPP model) for nuclear-waste isolation studies
    • Burgers-creep (viscoplastic; combination of Burgers and Mohr-Coulomb models)
    • Power-law (viscoplastic; combination of the two-component power law and the Mohr-Coulomb model)
    • WIPP-creep (viscoplastic model combining the WIPP model and the Drucker-Prager model)
    • Crushed-salt
  • Includes six built-in joint material models:
    • Elastic
    • Mohr-Coulomb
    • Continuously Yielding
    • Softening Healing Mohr-Coulomb NEW
    • Bilinear Mohr-Coulomb NEW
    • Power Law Creep NEW
  • Specify statistical distributions for material properties
  • Groundwater fluid flow analysis is included
    • Effective stress, pore pressure (water table)
    • Steady-state
    • Transient
    • Fluid flow through fractures and matrix (blocks between fractures)
    • Fracture fluid pressure and matrix fluid pressures are also coupled
    • Mechanical-fluid coupling
    • Simulate the transport and mechanical effects of proppant fluid filled joints
  • Three options are available for additional analysis:
    • Perform dynamic analysis by simulating earthquakes, vibrations, and blasts
    • Perform thermal analysis by simulating transient heat conduction
    • Create, load, and run customized (user-defined models) zone and joint models via C++ scripting

Download